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SUMMARY

The propagation, runup and rundown of long surface waves are numerically investigated, initially in
one dimension, using a well-balanced high-resolution finite volume scheme. A conservative form of
the nonlinear shallow water equations with source terms is solved numerically using a high-resolution
Godunov-type explicit scheme coupled with Roe’s approximate Riemann solver. The scheme is also
extended to handle two-dimensional complex domains. The numerical difficulties related to the presence
of the topography source terms in the model equations along with the appearance of the wet/dry fronts
are properly treated and extended. The resulting numerical model accurately describes breaking waves as
bores or hydraulic jumps and conserves volume across flow discontinuities. Numerical results show very
good agreement with previously presented analytical or asymptotic solutions as well as with experimental
benchmark data. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Shallow water long waves, such as tides, tsunamis and storm surges, can develop large amplitudes
in coastal waters with the (hazardous) potential for causing casualties and large property damage.
A considerable research effort has been devoted in recent years to the development of various
analytical and numerical models based on the depth-integrated, nonlinear shallow water equations
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(NLSW) in order to describe the physical process. The analytical approaches provide exact solutions
for idealized situations (e.g. nonbreaking wave propagation and runup) but offer insights into the
physical process, see for example [1–5]. However, due to the complex nature of the water motion,
especially during the process of wave breaking, any simulation models of the runup of breaking
long waves must be treated numerically. Numerical models can provide approximate solutions in
more general settings suitable for practical applications as predictive tools.

The NLSW equations have been employed widely to model wave propagation and runup, see
for example [6–14] among others. As it was stressed out in [6, 9], the analogy between a shallow
water breaking wave and a shock wave in gas dynamics suggests that if provision is made in a
numerical model of the NLSW equations to account for the energy dissipation associated with
wave breaking, these equations may also be used to simulate the runup of breaking waves. In this
case the post-breaking condition can be simplified and represented as a propagating bore (a shock
discontinuity). In general, the models utilizing the NLSW equations although having limitations,
such as failing to provide depthwise variations in velocity and omit dispersive effects, appear to
be able to model important aspects of the wave breaking process and the general characteristics
of the runup process. The main computational challenges are the treatment of the wet/dry fronts
in the presence of topography, which correspond to a moving shoreline, and the calculation of
discontinuities. As a long or very long wave approaches shallow water its wavelength and energy
are compressed and its amplitude increase. In this region nonlinearities lead to steepening waves,
propagating bores or even breaking waves. Only the most general valid integral form of the NLSW
equations is valid near discontinuities and modelling this regime accurately requires a numerical
model that can correctly compute steep gradients and discontinuities.

Finite difference schemes have been commonly used in one- and two-dimensional long wave
runup models solving, usually, the nonconservative (primitive) form of the NLSW equations. Titov
and Synolakis [6] solved the characteristic form of the NLSW equations using finite difference
methods and, in [8], extended their one-dimensional model to two dimensions through a splitting
scheme and used a Neumann-type technique to extrapolate the water line velocity. Liu et al. [7]
modelled the runup through flooding and drying on the computational cells in response to adjacent
water level changes. For reviews on finite difference methods please refer also to [15, 16].

When dealing with flow discontinuities, volume conservation becomes an important issue for
schemes based on nonconservative differential form of the NLSW equations. The finite volume
method, however, has the advantage of solving the integral form of the nonlinear equations as
a fully conservative scheme. The Godunov-type formulation with a Riemann solver has such
good shock capturing capability. Dodd [10] investigated one-dimensional wave runup, overtopping
and regeneration problems using a Roe-type Riemann solver and resolved the moving shoreline
problem by imposing a minimum water depth in the dry area. Later, Hubbard and Dodd [11]
extended the model to two dimensions using an adaptive mesh refinement algorithm. A similar
scheme was presented by Bradford and Sanders [17] but used a characteristic method to track
the shoreline. Hu et al. [13] presented a similar one-dimensional Godunov-type upwind scheme
by applying the HLL approximate Riemann solver and by modifying the wave speed on the dry
side of a cell interface, thus providing a robust technique to track the moving shoreline. Brocchini
et al. [18] applied the finite volume method to two dimensions using the WAF method for the
exact Riemann problem and treated the moving shoreline as a cavitation problem. Li and Raichelen
[9] solved the NLSW equations in one dimension by a WENO scheme and used a computational
domain mapping technique to model the shoreline movement. More recently, Leveque and George
[14] utilized Leveque’s wave-propagation algorithm, a Godunov-type high-resolution finite volume
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method, with a Roe-type Riemann solver that uses the HLLE speeds to handle source terms and
dry states.

Other numerical models such as the Boussinesq-type models have been used to simulate wave
breaking and runup and up to the point of breaking can represent the nonlinear and dispersive
effects to high degree of accuracy. However, a special term has to be included in the momentum
conservation equation to account for the dissipation associated with wave breaking. This term must
incorporate coefficients that need to be calibrated by field or experimental data, which limit their
application. Occasionally, numerical solutions of the Navier–Stokes equations also have been used
in wave breaking and runup investigations. However, simple elliptic equations must be solved for
the incompressible internal flow, with appropriate boundary conditions for the free surface, which
are often too expensive computationally. The finite element method, owing its flexible meshing
scheme, is another popular modelling approach in two dimensions. Gopalakrishnan and Tung [19]
and Zelt [20] developed long wave runup models based on Eulerian and Langrangian schemes,
respectively. For reviews on the mathematical and numerical models please refer to [15, 21, 22]
and references therein.

The primary goals of the present study are (a) to apply and extend in high resolution and in
two-dimensional complex domains a specific treatment for calculating wet/dry fronts in a well-
known finite volume Roe-type scheme; (b) to asses the ability of the numerical scheme to track
the moving shoreline line and to (conservatively) capture discontinuities associated with bores
or breaking waves, which are essential for runup calculations and (c) to compare the computed
results with analytical solutions and, more importantly, to experimental benchmark data. We note
here that using the NLSW equations solved by a finite volume scheme for the calculation of the
breaking and runup of long waves was not a very common practice in the past, but in the last few
years literature in this area has grown fast, see for example [9–11, 14, 18, 23–25].

2. MODEL EQUATIONS

We first consider the one-dimensional NLSW system of (mass and momentum) equations:

�h
�t

+ �(uh)

�x
= 0

�(uh)

�t
+ �

�x

(
hu2 + 1

2
gh2

)
= −gh

dB

dx
− ghSf

(1)

where x is the space coordinate, t the time variable, h(x, t) is the fluid depth, u(x, t) is the
horizontal velocity, g is the gravitational constant, B = B(x) is the bed topography function and

Sf = n2m
u|u|
h4/3

is the friction slope term, which models bottom friction effects using the Manning empirical form,
with nm being the Manning roughness coefficient.

The model can be obtained by depth averaging the Navier–Stokes equations. The water is
considered as an incompressible fluid, the pressure is assumed hydrostatic, vertical accelerations
negligible and waves are nondispersive. These are reasonable assumptions under the shallow water
hypothesis in many practical applications.
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System (1) can be written under the form of a conservation law with source terms as a single
vector equations:

�q
�t

+ �
�x

F(q) =R + S (2)

where

q=
[
h

uh

]
, F=

[
uh

hu2 + 1
2gh

2

]
, R=

⎡⎣ 0

−gh
dB

dx

⎤⎦ , S=
[

0

−ghSf

]
(3)

The Jacobian matrix of the system is

A(q) = �F
�q

=
[

0 1

c2 − u2 2u

]
(4)

with c= √
gh being the wave celerity. Then, the eigenvalues of the Jacobian matrix are

�1 = u − c, �2 = u + c (5)

with the corresponding eigenvectors being

r1 =
[

1

u − c

]
, r2 =

[
1

u + c

]
(6)

If h>0, the system is strictly hyperbolic and A(q) diagonalizes as follows:

X(q)−1A(q)X(q) =K(q) =
[

�1 0

0 �2

]
(7)

where X(q) is a matrix whose columns are the eigenvectors of A(q), i.e.

X(q) =
[
1 1

�1 �2

]
(8)

Setting �+ = max(0, �) and �− = min(0, �), we also define the following matrices:

K(q)± =
[

(�1)
± 0

0 (�2)
±

]
, A(q)± =X(q)K(q)±X(q)−1, |A(q)| =A(q)+ − A(q)−

3. THE NUMERICAL METHOD

Here the well-known approximate Riemann solver of Roe [26] is applied to the NLSW equations.
This is a very popular scheme for shallow water flow computations and we will briefly present it
here. To discretize the system of equations let, xi = i�x , xi±1/2 = (i ± 1

2 )�x , where, for simplicity,
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we assume that �x is a uniform spatial step. The approximate cell average of the variable q in the
computational cell Ii =[xi−1/2, xi+1/2] at time t is denoted as Qi (t), i.e.

Qi (t) = 1

�x

∫
Ii
q(x, t) dx

and the approximate value of q at (xi+1/2, t) by qi+1/2(t).
By considering approximations of the solution q(x, t) that are constant on each finite volume Ii ,

the value of this approximate solution at the discrete time tn will be given as Qn
i = [hni , (hu)ni ]T.

Next, by denoting �tn = tn+1 − tn , Fn
i =F(Qn

i ) and �i−1/2(·) = (·)i − (·)i−1, we consider the
following conservative numerical scheme, assuming initially that S= 0,

Qn+1
i =Qn

i − �tn

�x
[Fn

i+1/2 − Fn
i−1/2] + �tn

�x
[(R−

i+1/2)
n + (R+

i−1/2)
n] (9)

Here, the numerical fluxes are defined as

Fn
i−1/2 = 1

2 (F
n
i−1 + Fn

i ) − 1
2 |An

i−1/2|�i−1/2Qn (10)

with

An
i−1/2 =

[
0 1

(cni−1/2)
2 − (uni−1/2)

2 2uni−1/2

]
(11)

being the Roe average Jacobian matrix between Qn
i−1 and Qn

i , with the average velocity and
celerity given by

uni−1/2 =
uni−1

√
hni−1 + uni

√
hni√

hni−1 +√
hni

, cni−1/2 =
√
g
hni + hni−1

2
(12)

The corresponding eigenvalues of An
i−1/2 are then given by

(�1)
n
i−1/2 = ui−1/2 − ci−1/2, (�2)

n
i−1/2 = ui−1/2 + ci−1/2

and the eigenvectors as

(r1)ni−1/2 =
[

1

(�1)
n
i−1/2

]
, (r2)ni−1/2 =

[
1

(�2)
n
i−1/2

]

It is well known that the above average values ensure the following property:

�i−1/2F=Ai−1/2�i−1/2Q=
2∑

p=1
[�p�prp]i−1/2 (13)

where ai−1/2 =X−1
i−1/2�i−1/2Q are the wave strengths, resulting in

(�1,2)i−1/2 = �i−1/2(hu) + (−ui−1/2 ± ci−1/2)�i−1/2h

±2ci−1/2
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Then, the numerical flux can be expressed in a decomposed form as

Fn
i−1/2 = 1

2
(Fn

i−1 + Fn
i ) − 1

2

2∑
p=1

[|�p|�prp]ni−1/2 (14)

In scheme (9) upwinding of the topography source term, see [27, 28], is performed, and by
using the matrix identities defined in Section 2, as follows:

R+
i−1/2 = (A+A−1R)i−1/2 = 1

2 (X(I + K−1|K|)X−1R)i−1/2 (15)

and similarly

R−
i−1/2 = 1

2 (X(I − K−1|K|)X−1R)i−1/2 (16)

Then, using the weights of the decomposition of the source term onto the eigenvectors of the ap-
proximate Jacobian, bi−1/2 =X−1

i−1/2Ri−1/2, and when the following discretization of the numerical
source term is used

Ri−1/2 =
[

0

(−ci−1/2)
2(B(xi ) − B(xi−1))

]
(17)

the following equality holds:

�i−1/2F − Ri−1/2 = 0 (18)

and we obtain

R+
i−1/2 = 1

2

2∑
p=1

[�prp(1 + sgn(�p))]i−1/2 (19)

R−
i+1/2 = 1

2

2∑
p=1

[�prp(1 − sgn(�p))]i+1/2 (20)

with

(�1,2)i−1/2 = ± ci−1/2�i−1/2B

2

The numerical scheme presented above allows nonphysical numerical solutions (expansion
shocks), [29]. These can be avoided by applying Harten’s [30] entropy correction (essentially a
modification to the moduli of �), which ensures that the approximate solution satisfies an entropy
condition, see for example [29, 31] for applications.

Conserving the stability requirements, each time step �tn is calculated based on the following
Courant–Friedrichs–Lewy (CFL) condition:

�tn = �xCr

maxi {maxp |�|} (21)

where Cr is the Courant number between zero and one.
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When the friction term, which does not involve spatial derivatives, is assumed present (S �= 0),
it can be discretized in a semi-implicit way to avoid numerical oscillations, as proposed in [32].
The final expression of the numerical scheme then becomes

Qn+1
i =

Qn
i − �tn

�x
[Fn

i+1/2 − Fn
i−1/2 + (R−

i+1/2)
n + (R+

i−1/2)
n] + �tn�Sni

1 − (1 − �)�tnSni /Q
n
i

(22)

in which � is a weight of the implicitness of the friction term. We note here that sometimes
modellers omit the inclusion of the friction term from their calculations.

4. CONSERVATION PROPERTY AND THE WET/DRY TREATMENT

An important property of system (1) is related to the topography source term: the shallow water
system admits nontrivial steady states. They are characterized by

�(uh)

�x
= 0

�
�x

(
hu2 + 1

2
gh2

)
= −gh

dB

dx

(23)

i.e.

(uh) = constant

u2h + g(h + B) = constant
(24)

A particular case that provides a benchmark for many numerical schemes is the still water steady
state (flow at rest), i.e. when u = 0 and h + B = constant. In [27] the concept of a well-balanced
condition, called the C-Property or conservation property, was introduced. A given scheme would
satisfy the C-Property if, in the case of a flow at rest, there is an exact balance between the discrete
components of the flux and a given source term approximating this stationary solution. Thus, when
numerically treating the source terms, for the C-Property to be satisfied exactly or approximately
(to order O(�x2)) one must ensure that this equilibrium solution would not be perturbed. The
numerical scheme presented in the last section is well balanced in this sense.

In [33] an extension of the C-Property was introduced in order to take into account wet/dry
fronts. According to this extension, a numerical scheme is considered to be well balanced if it can
solve exactly steady-state solutions corresponding to flow at rest regardless of including wet/dry
transitions or not. If no modifications are made, the numerical scheme presented in the previous
section is not well balanced in this sense. In previous works [32, 34], a two-dimensional model
was presented for unsteady flow simulations based on a first-order explicit upwind finite volume
scheme on unstructured meshes where the wetting/drying problem was included from a still
water steady-state approach with the requirement of exact mass conservation at the discrete level.
A redefinition of the numerical source term was proposed in [32, 34] that allows to override the
above problem in the discrete representation of wet/dry fronts over adverse steep slopes.
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If we consider the interface xi+1/2 placed between a wet cell Ii and a dry cell Ii+1, we now
define

Ri+1/2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
0

−(cni+1/2)
2hni

]
if hni <B(xi+1) − B(xi )

[
0

(cni+1/2)
2hni+1

]
if hni+1<B(xi ) − B(xi+1)

[
0

−(cni+1/2)
2(B(xi+1) − B(xi ))

]
in other cases

(25)

This modification of the numerical source term is a redefinition of the discretized topography
function (essentially a local redefinition of the bottom level gradient at the wet/dry interface) and
is justified by the assumption of a piecewise constant bottom representation in each cell. When the
topography emerges at an interface it is redefined in the dry cell in order to avoid the appearance
of spurious pressure forces and to satisfy condition (18). This treatment does not diffuse the front
and no spurious oscillations appear in the free surface. In terms of the numerical scheme, the
values of b in (19) and (20) are redefined accordingly.

While with this modification of the discretized topography function one can treat situations of
emerging topography for a flow at rest, further modifications have to be made for a flow in motion
(u �= 0) because otherwise the water could overtop steps of arbitrary size. This is important in the
cases considered in the present work that involve the runup of waves on complex topographies. In
[34] these situations were treated by imposing the following condition at the wet cell Ii :

(uh)ni = 0 (26)

in order to simulate the fact that the water mass flow across a wet/dry front is zero. However, with
this treatment the computed velocities of an advancing wet/dry front are not correctly simulated. A
new improvement was proposed in [33] based on the remark that (26) is only natural at the wet/dry
front and not in the whole wet cell and therefore it has to be treated like an internal boundary. By
considering the situation where the bottom topography emerges at the interface xi+1/2 at time tn

and Ii+1 is a dry cell (i.e. Qn
i+1 =[0, 0]T), the following procedure was proposed:

• The modified numerical source term given by (25) is computed.
• A new state Q̃n

i defined by

Q̃n
i =

[
hni

0

]
(27)

is considered.
• Qn+1

i and Qn+1
i+1 are computed using scheme (22) with the numerical fluxes Fn

i+1/2 and source

term R±
i+1/2 associated with the states Q̃n

i , Q
n
i+1 and the modified source term (25).

The numerical treatment is similar if Ii+1 is the wet cell and Ii is the dry one. As it was pointed out
in [33, 35], this numerical treatment avoids the appearance of negative values of h at the dry cell
and that the smaller the momentum absolute value is at the wet cell, the better this approximation
would be.
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5. HIGH-RESOLUTION SCHEME

The numerical scheme presented in Section 3 is a standard first-order upwind type scheme.
Usually though, accuracy of higher than first order is required for practical calculations. The
accuracy of the scheme can be improved, without introducing spurious oscillations into the solution,
by the application of flux-limiting techniques. These ensure second-order accuracy in smooth
regions of the flow, while enforcing a total variation diminishing (TVD) property, see for example
[14, 30, 31, 36]. This can be achieved by including a higher-order correction term in the numerical
flux as

FTVD
i−1/2 =FFO

i−1/2 + �n
i−1/2(F

HO
i−1/2 − FFO

i−1/2) (28)

where � is a nonlinear flux-limiter function. Then if we use the Lax–Wendroff numerical flux as
a higher-order flux and the Roe numerical flux as a first-order one, we get

FHO
i−1/2 − FFO

i−1/2 = 1

2

(
X|K|

(
I − �tn

�x
|K|
)
X−1

)n

i−1/2
�i−1/2Qn

Then by using (28) the TVD numerical flux becomes

Fn
i−1/2 = 1

2 (F
n
i + Fn

i−1) − 1
2 (X|K|LX−1)ni−1/2�i−1/2Qn (29)

in which

L= diag

(
1 − �(�p)

(
1 − �tn

�x
|�p|

))
where

�p = (�p)s−1/2

(�p)i−1/2
, s =

{
i − 1 if �p>0

i + 1 if �p<0

The decomposed form of (29) is then given as

Fn
i−1/2 = 1

2
(Fn

i + Fn
i−1) − 1

2

2∑
p=1

[�p|�p|(1 − �(�p)(1 − |�p|))rp]ni−1/2 with �p = �tn

�x
�p

Next, if a balance is to be maintained between the numerical flux and source terms, a corre-
sponding higher-order correction must also be applied to the source term approximation following
[36]. The flux-limited numerical source, which maintains the balance achieved by the first-order
discretization (and also satisfies the C-Property), takes the form

R±
i−1/2 = 1

2 [X(I ± K−1|K|L)X−1R]i−1/2 (30)

or in decomposed form

R±
i−1/2 = 1

2

2∑
p=1

[�prp(1 ± sgn(�p)(1 − �(�p)(1 − |�p|)))]i−1/2 (31)
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A number of different flux limiters can be used, including Minmod, Van Leer, Van Albada,
Monotonized Central and Superbee, see for example [29, 37].

We note here that one of the objectives of the present work is to apply the corrections presented
in Section 4 on the second-order scheme and access its performance and later extend it in two
dimensions.

6. NUMERICAL TESTS AND RESULTS IN ONE DIMENSION

The extended numerical model is now well adapted to simulate steady states as, for example, the
flow can be far from a solitary wave, and cases of emerging topographies of arbitrary profile for
the case of runup and rundown of long waves. In all practical implementations, a threshold of
5× 10−14 has been used in order to identify a dry cell.

6.1. Tsunami runup on a plane beach

As part of the Third International Workshop on Long-Wave Runup Models in 2004 [38], several
benchmark problems were specified to allow the comparison of numerical, analytical and exper-
imental data. The web site of the conference is http://www.cee.cornell.edu/longwave, where all
the relevant data are provided.

The first benchmark problem has a uniform, frictionless, steep sloping beach with B(x, t) =−x ,
and initially motionless water with the shoreline positioned at x = 0. An incoming wave is induced
by a nonzero initial surface elevation, specified by data provided for x ∈ [0, 50 000] in increments
of 50m. Data for the analytical solution of the surface elevation and velocity, at three separate times
t = 160, 175, and 220 s, were provided. The initial value problem technique introduced by Carrier
et al. [5] was used to produce the benchmark data. The position and velocity of the shoreline were
also provided for t ∈ [0, 350] s. Wave breaking is not included in this problem. The shape of the
initial free surface is shown in Figure 1 (this shape is akin to slide-generated tsunami, but with
zero initial velocity).

We computed this problem over a domain x ∈ [−500, 50 000]m with a uniform partition and
we present the results for the water surface elevation and velocity using �x = 20m and CFL= 0.5.
In Figures 2–4, we compare the results in terms of the surface elevation and velocity for the
first- and second-order scheme (using the Minmod limiter) at the three given times. In the figures,
only small portions of the computational domain near the beach are shown (in order to be able to
distinguish differences in the results). The results for the second-order scheme are clearly better
than the first-order one and agree very well with the analytical solution, only in the case of t = 220 s
the numerical solution slightly overpredicts the shoreline position. Convergence to the analytical
solution was observed as the grid was refined.

In order to capture the fine-scale motion of the shoreline, which occurred over a small fraction of
the entire domain, computational grid cells were clustered near the shoreline. In Figure 5 the motion
of the computed shoreline is compared with the exact solution using 1000 grid points clustered
in the area [−250, 250]. The computed shoreline movement follows closely the provided exact
solution, showing the initial rundown and subsequent runup on the plane beach, but the computed
velocity profile slightly over and under predicts the provided exact solution, especially at relatively
larger velocity values, similar comments were made in [35]. Nevertheless, the computed solution
follows the overall exact velocity profile.
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Figure 1. Initial free surface elevation for tsunami runup.
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Figure 2. Tsunami runup on a plane beach at t = 160 s: surface elevation (left) and velocity (right).

6.2. Runup of solitary waves on a plane beach

This problem is presented here as to compare numerical and experimental results of the runup,
rundown and wave breaking of a solitary wave on a plane beach. Synolakis [3] presented a series
of surface profiles from his runup experiments for a beach of slope of 1:19.85, that is

B(x)=
{−x tan � x� cot �

−1 x> cot �
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Figure 4. Tsunami runup on a plane beach at t = 220 s: surface elevation (left) and velocity (right).

with tan �≈ 0.0504. Although it is well known that solitary waves are not classical solutions of
the NLSW equations, it has been found that, for small amplitudes and over limited distances,
Synolakis’s solution provides a good model for beach inundation, and his sets of data have
been extensively used in order to validate numerical models. Figure 6 shows a schematic of the
experiments with H indicating the incident wave height, � the beach angle and d the depth of
stagnant water. An initial solitary wave is positioned at point X1 that is located at half the wave
length from the toe of the beach located at X0. A Mianning coefficient nm = 0.01 was used in order
to define the glass surface roughness used in the experiments and we considered a computational
domain for x ∈ [−10, 100]m.
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Figure 6. Definition figure of solitary wave runup on a plane beach.

At t = 0 the incident wave is described by

�(x, 0)= H

d
sech2(�(x − X1))

where � = √
3H/4d with initial velocity

u(x, 0) =−√g/d�(x, 0)

and

X1 =
√

4d

3H
arcosh

(√
1

0.05

)
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The left boundary condition is transmissive and is kept sufficiently far from the toe of the beach
in order to prevent any interaction with the water waves during the runup process.

Two different cases are presented for comparison with the numerical model. For the first case, the
incident wave height is H/d = 0.04 and for the second one H/d = 0.28 (a larger amplitude solitary
wave). According to Synolakis [3] wave breaking occurred during rundown when H/d>0.044
and hence breaking did not occur for the H/d = 0.04 wave (although it very nearly broke on the
rundown). The H/d = 0.28 wave broke strongly during both the runup and rundown phases of
the motion. The CFL value used for this problem was 0.5, with �x = 0.1, � = 0.5 in (22) and the
Minmod limiter was used.

Figure 7 presents the series of the free surface profiles when H/d = 0.04 for different nondimen-
sional times. Figure 7 presents both the runup and rundown processes. At times t

√
g/h = 20, 26, 32

the incident wave approaches the shoreline and by time t
√
g/h = 38 has started its runup on the

beach and the numerical solution follows very closely the experimental results. Notice that the
shoreline elevation and the runup tongue thickness are predicted well by the numerical scheme.
The maximum runup, R/d , measured in [3] for this problem was R/d = 0.156. The numerical
scheme predicted that value, but we note here that this is a value that strongly depends on the value
of the friction coefficient. The rundown of the wave is also well predicted by the finite volume
scheme. The experimental observation that the wave nearly broke down during rundown can be
seen at t

√
g/h = 62 where the numerical results look similar to that of a hydraulic jump.

Figure 8 presents the series of surface profiles with H/d = 0.28. At times t
√
g/h = 10, 15, 20,

as the wave shoals, the computed front face has become steeper earlier than the experimental wave
due to the large wave height and the limitation of the NLSW equations that do not include higher-
order dispersive terms to balance the nonlinear effects. The experimental wave breaks around
t
√
g/h = 20 and the computed solution represents this as a bore and stores the water spilled from

the breaking wave behind the front face. The vertical front indicates an abrupt change of the flow
velocity from the bore to the undisturbed water ahead. Then the bore collapses as breaking occurs.
Because of volume conservation, the computed solution fully recovers when breaking stops and
a good agreement is maintained between the numerical and experimental results, until the water
reaches the highest point around t

√
g/h = 45. In [3] an interval of the maximum runup value for

a breaking wave was given, that is R/d ∈ [0.918(H/d)0.606, 1.109(H/d)0.582] ≈ [0.42, 0.53] and
the value predicted by the numerical scheme is well within this interval. Then the water is receding
creating a breaking wave near the still water line. This is created as the retreating flow interacts
with the wave tail and creates a region of large free surface curvature near the initial shoreline
position. In the numerical solution this is approximated as a hydraulic jump conserving the flow
volume behind it. Small discrepancies in the runup tongue, which is thinner than the experimental
data, begin to show at time t

√
g/h = 55. However, both the position of the jump and the height

difference across the jump are predicted well by the numerical scheme. The qualitative agreement
between the experimental and numerical results resumes when breaking stops at the end of the
rundown process, demonstrating the resilience of the scheme. We emphasize that convergence
towards a steady state of a flow at rest is accurately computed, after the total reflection of the
incident wave, whereas other schemes used in the literature may be unable to provide correct
results related to this convergence since nonphysical oscillations are generated. Due to this reason,
authors sometimes do not present results for large values of time, for the following rundown that
is more difficult to compute, and only present their results for the runup process.

In Figure 9 the time history of the relative volume conservation error is presented. The result
shows no volume change until the wave breaks and propagates over the slope. The error shows
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Figure 7. Surface elevation of solitary wave runup on a plane beach for H/d = 0.04 at times
t
√
g/h = 20, 26, 32, 38, 44, 50, 56, 62 (from upper left).
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Figure 8. Surface elevation of solitary wave runup on a plane beach for H/d = 0.28 at times
t
√
g/h = 10, 15, 20, 25, 30, 45, 55, 60, 70, 80 (from upper left).
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Figure 9. Relative mass volume conservation error for solitary wave runup
on a plane beach with H/d = 0.28.

small increase when the bore hits the still water line and then becomes stable up to the point
the water reaches the highest point. Then at the beginning of the rundown a small decrease is
observed up to the point of the hydraulic jump development. The maximum error is 12× 10−7%
of the initial solitary wave volume. All the results presented here compare well or in favour with
the results presented, for example, in [6, 9, 20] among others.

6.3. Tsunami generation and runup due to a two-dimensional landslide

This benchmark problem is from [4] and was also used as a benchmark problem in the Third
International Workshop on Long-Wave Runup Models where all relevant data were also provided.
Here, the modellers were asked to predict the free surface elevation and runup associated with a
translating Gaussian-shaped mass, initially at the shoreline. In dimensional form, the seabed can
be described by

B(x, t) = B0(x) + h0(x, t)

where B0(x)=−x tan � is the beach slope, and

h0(x, t) = � exp

⎡⎢⎣−
⎛⎝2

√
x	2

� tan �
−
√
g

�
	t

⎞⎠2
⎤⎥⎦

is the time-dependant perturbation of the seabed, in which � is the maximum vertical slide thickness,
	 is the thickness/slide length and � is the beach slope. Once in motion, the mass moves at constant
acceleration.
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Figure 10. Tsunami generation and runup: surface elevation for Case A at times t ′ = 0.5, 1.5.
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Figure 11. Tsunami generation and runup: surface elevation for Case B at times t ′ = 0.5, 4.5.

We compute the results for two cases:

• Case A: tan �/	= 10 where 	 = 0.01 (very thin mass layer), � = 5.7◦ and � = 1m.
• Case B: tan �/	= 1 with 	= 0.1, �= 5.7◦ and � = 1m.

The computational domain is for x ∈ [0, 5000]m, with�x = 2m used, for Case A, while x ∈ [0, 130]
and �x = 0.1 for Case B. The CFL value used for this problem was 0.8 using the Minmod limiter.

We compare the computed solutions for the surface elevation with the data from the analytical
solutions obtained for the linear shallow water equation equations from [4] at the nondimensional
times: t ′ =√g/�	t = 0.5, 1.5 for the first case and at times t ′ = 0.5, 4.5 for the second one.

In Figure 10 and for Case A, agreement with the analytical solutions is very good on pre-
dicting the wave runup and wave propagation on thin slide. For this case the offshore wave and
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height and shape agree very well with the analytical solution with small differences near the
shoreline.

Agreement for Case B, using any model other than the linear shallow water wave equations,
is expected to be poor. As it can be seen in Figure 11, at an early time the numerical result and
the analytical solution are close (since the accumulating effects of nonlinearity are small relative
to the linear driving force). For a later time this is no longer the case since nonlinear propagation
effects become important. In this case, omission of the nonlinear terms, in deriving the analytical
solution, leads to difference in the solutions, which become stronger in time and the analytical
solution is not adequate for this case. Similar observations and results were made by the workshop
participants.

7. TWO-DIMENSIONAL EXTENSION

In this section we present the two-dimensional NLSW equations along with an extension of the
numerical scheme and of the wet/dry treatment.

In two dimensions the NLSW equations are given as

�q
�t

+ �
�x

F(q) + �
�y

G(q) =R(q, x, y) + S(q, x, y) (32)

where now

q=
⎡⎢⎣

h

hu

hv

⎤⎥⎦ , F(q) =

⎡⎢⎢⎣
hu

hu2 + 1
2gh

2

huv

⎤⎥⎥⎦ , G(q) =

⎡⎢⎢⎣
hv

huv

hv2 + 1
2gh

2

⎤⎥⎥⎦
with [u, v]T being the vector velocity field. The geometrical source term is given as R=R1 +R2
in which

R1 =

⎡⎢⎢⎢⎣
0

−gh
�
�x

B(x, y)

0

⎤⎥⎥⎥⎦ , R2 =

⎡⎢⎢⎢⎢⎣
0

0

−gh
�
�y

B(x, y)

⎤⎥⎥⎥⎥⎦
and the friction source vector given as

S=

⎡⎢⎢⎣
0

−ghSxf

−ghSyf

⎤⎥⎥⎦
with

Sxf = n2mu
√
u2 + v2h−4/3 and Syf = n2mv

√
u2 + v2h−4/3

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:419–452
DOI: 10.1002/fld



438 A. I. DELIS, M. KAZOLEA AND N. A. KAMPANIS

The Jacobian matrices of system (32) are now

�F
�q

=A=

⎡⎢⎢⎣
0 1 0

c2 − u2 2u 0

−uv v u

⎤⎥⎥⎦ ,
�G
�q

=B=

⎡⎢⎢⎣
0 0 1

−uv v u

c2 − v2 0 2v

⎤⎥⎥⎦
The eigenvalues of A and B are

�F1 = u − c, �F2 = u, �F3 = u + c (33)

and

�G1 = v − c, �G2 = v, �G3 = v + c (34)

with corresponding eigenvectors

rF1 =
⎡⎢⎣

1

u − c

v

⎤⎥⎦ , rF2 =
⎡⎢⎣
0

0

c

⎤⎥⎦ , rF3 =
⎡⎢⎣

1

u + c

v

⎤⎥⎦ (35)

rG1 =
⎡⎢⎣

1

u

v − c

⎤⎥⎦ , rG2 =
⎡⎢⎣

0

−c

0

⎤⎥⎦ , rG3 =
⎡⎢⎣

1

u

v + c

⎤⎥⎦ (36)

The finite volume formulation imposes conservation laws in a control volume which reduces to
a two-dimensional cell for depth integrated problems. Integrating system (32) over a cell �i and
applying the Gauss divergence theorem to the flux integral, one obtains

�
�t

∫
�i

q d� +
∫

�i

(Fnx + Gny) d�=
∫

�i

(R + S) d� (37)

where �i is the cell boundary and [nx , ny]T the outward normal vector. Then by denoting |�i | the
cell area and by Q the average value of the conserved quantities over the volume at a given time,
from Equation (37) the following conservation equation can be written for every cell

dQ
dt

= − 1

|�i |
∫

�i

(Fnx + Gny) d� + R̃ + S̃ (38)

in which R̃ and S̃ are average quantities stored at the center of the cell. In this work we used
uniform rectangular cells with dimensions (�x,�y) in a Cartesian grid and integrating equation
(38) with a time step �tn we obtain

Qn+1
i j =Qn

i j − �tn

�x
[Fn

i+1/2, j − Fn
i−1/2, j ] − �tn

�y
[Gn

i, j+1/2 − Gn
i, j−1/2] + �tn(Rn

i, j + Sni, j ) (39)

where now (i, j) indicates the cell centroid, the half indices (i ± 1
2 ) an ( j ± 1

2 ) indicate the cell
interfaces and Fi±1/2, j and Gi, j±1/2 are the numerical fluxes, with Ri, j and Si, j being the source
term vectors.
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Solving locally linearized Riemann problems, at each cell interface, based on the Roe solver,
the average values for the velocities and water depth are obtained as

ui±1/2, j =
√
hi±1, j ui±1, j +√

hi j ui j√
hi±1, j +√

hi j
, vi, j±1/2 =

√
hi, j±1vi, j±1 +√

hi jvi j√
hi, j±1 +√

hi j
(40)

and

hi±1/2, j = 1
2 (hi±1, j + hi j ), hi, j±1/2 = 1

2 (hi, j±1 + hi j ) (41)

Then, the Roe-averaged eigenvalues and eigenvectors in two dimensions can be calculated.
This leads to numerical fluxes expressed for the second-order flux-limiting scheme as [36]

Fn
i+1/2, j =

1

2
(Fn

i+1, j + Fn
i j ) − 1

2

3∑
p=1

[�Fp |�Fp |(1 − �(�Fp )(1 − |�Fp |))rFp ]ni+1/2, j (42)

Gn
i, j+1/2 = 1

2
(Gn

i, j+1 + Gn
i j ) − 1

2

3∑
p=1

[�Gp |�Gp |(1 − �(�Gp )(1 − |�Gp |))rGp ]ni, j+1/2 (43)

in which the wave strengths are now

(�F1,3)i+1/2, j = �i+1/2, j (hu) + (−ui+1/2, j ± ci+1/2, j )�i+1/2, j h

±2ci+1/2, j

(�F2 )i+1/2, j = �i+1/2, j (hv) − vi+1/2, j�i+1/2, j h

ci+1/2, j

with similar expressions for the �Gp values and

�Fp = (�Fp )I+1/2, j

(�Fp )i+1/2, j
, I =

{
i − 1 if �Fp>0,

i + 1 if �Fp<0,
�Fp = �t

�x
�Fp (44)

For the complete geometrical source term discretization associated with the (i, j) cell

R1
i j =R1−

i+1/2, j + R1+
i−1/2, j , R2

i j =R2−
i, j+1/2 + R2+

i, j−1/2 (45)

where, for the second-order scheme, following [36],

R1±
i+1/2, j = 1

2

3∑
p=1

[�F
p r

F
p (1 ± sgn(�Fp )(1 − �F

p (1 − |�Fp |)))]i+1/2, j (46)

R2±
i, j+1/2 = 1

2

3∑
p=1

[�G
p r

G
p (1 ± sgn(�Gp )(1 − �G

p (1 − |�̂Gp |)))]i, j+1/2 (47)

in which bFi+1/2, j =X−1
i+1/2, jRi+1/2, j and bGi, j+1/2 =X−1

i, j+1/2Ri, j+1/2, with Ri+1/2, j , and Ri, j+1/2

being proper discretizations of the source term defined in the next section.
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The CFL stability condition in the two-dimensional case gives the calculation of the time step
as

�tn = min{�x,�y}Cr
maxi, j {

√
u2i j + v2i j + ci j }

(48)

When the friction term is present, it is discretized again in a semi-implicit way and the final
expression of the numerical scheme becomes [32]

Qn+1
i j =

Qn
i j−

�tn

�x
[Fn

i+1/2, j−Fn
i−1/2, j+(R1

i j )
n]−�tn

�y
[Gn

i, j+1/2−Gn
i, j−1/2+(R2

i j )
n]+�tn�Sni j

1 − (1 − �)�tnSni j/Q
n
i j

(49)

8. CONSERVATION PROPERTY AND WET/DRY TREATMENT IN 2D

The extended C-Property and the wet/dry front treatment were presented in [33] only in the one-
dimensional case. Here, the ideas presented in Section 4 are extended in two dimensions. Similar
work can be found also in References [32, 34]. Consider a flow at rest in 2D, i.e.

u(x, y, t) ≡ 0, v(x, y, t) ≡ 0 and h(x, y, t) = D − B ∀(x, y, t)

where D is a constant. For this case we need to maintain numerically the following flux functions
and geometrical source term balance

�
�x

F(q) + �
�y

G(q)=R(q, x, y)

To obtain this condition numerically, we balance the numerical fluxes with the source term
approximations

Fi+1/2, j − Fi−1/2, j =R1
i j and Gi, j+1/2 − Gi, j−1/2 =R2

i j (50)

In order to take into account wet/dry transitions a natural extension of the C-Property would
be that the numerical scheme solves exactly the steady-state solutions of the form

u ≡ 0, v ≡ 0, h(x, y)=
{
D − B(x, y) if B<D

0 else
(51)

This solution represents flow at rest when B(x, y)<D and no water elsewhere.
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Then we construct redefined discretizations of the source term, by extending the one-dimensional
strategy, following the works in [32, 34, 39], as

Ri+1/2, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎣
0

−(cni+1/2, j )
2hni j

0

⎤⎥⎥⎦ if hni, j<B(xi+1, y j ) − B(xi , y j )

⎡⎢⎢⎣
0

(cni+1/2, j )
2hni+1, j

0

⎤⎥⎥⎦ if hni+1, j<B(xi , y j )−B(xi+1, y j )

⎡⎢⎢⎣
0

−(cni+1/2, j )
2(B(xi+1, y j )−B(xi , y j ))

0

⎤⎥⎥⎦ in other cases

(52)

and

Ri, j+1/2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎣
0

0

−(cni, j+1/2)
2hni j

⎤⎥⎥⎦ if hni, j<B(xi , y j+1)−B(xi , y j )

⎡⎢⎢⎣
0

0

(cni, j+1/2)
2hni, j+1

⎤⎥⎥⎦ if hni, j+1<B(xi , y j )−B(xi , y j+1)

⎡⎢⎢⎣
0

0

−(cni, j+1/2)
2(B(xi , y j+1)−B(xi , y j ))

⎤⎥⎥⎦ in other cases

(53)

Next, and refereing to Figure 12 for a hypothetical situation, we modify the correction presented
in Section 4, for a flow in motion, in order to avoid unphysical overtopping at steps of arbitrary
size. The following procedure is proposed here assuming, without loss of generality, that the cell
Ci j is wet.

• First the modified source terms (52) and (53) are computed.
• We identify on the neighbour cells Ci+1, j ,Ci−1, j ,Ci, j+1,Ci, j−1 in order to determine which
of them are dry.
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j

j+1/2

i i+1/2

Wet

Figure 12. A wet/dry situation in the two-dimensional grid.

◦ In the case of a neighbour dry cell in the x-direction (i.e. Qn
i+1, j =[0, 0, 0]T) we define a

new temporary state in the cell Ci j

Q̃n
i j =

⎡⎢⎢⎣
hni j

0

hni jv
n
i j

⎤⎥⎥⎦ (54)

– We compute the flux Fn
i+1/2, j , the source term contribution R1−

i+1/2, j and source term

contribution R1+
i+1/2, j , associated to the Ci+1, j cell, using the values Q̃n

i j ,Q
n
i+1, j .

– We set the value of Qn
i j to the one it was before we define the temporary state, in order

to correctly compute the flux and source term contribution at the other three interfaces.

◦ In the case of a neighbour dry cell in the y-direction (say for example cell Ci, j+1) we
define a new temporary state

˜̃Qn
i j =

⎡⎢⎢⎣
hni j

hni j u
n
i j

0

⎤⎥⎥⎦ (55)

– We compute the flux Gn
i, j+1/2 and R2±

i, j+1/2 evaluated using the values ˜̃Qn
i j ,Q

n
i, j+1.

– We set the value of Qn
i j to the one before the temporary state was defined.

• Having completed the procedure at each cell interface, we calculate Qn+1
i j .

The procedure is similar in a dry/wet situation. With the above procedure the solution at each
wet/dry interface is considered to be that corresponding to an emerging bottom situation for a
water at rest and then, in order to compute Qn+1

i j , the numerical fluxes corresponding to this
approximate solution at the interface are used. In this way the wet/dry front is only allowed to
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advance when the water gradient in the wet cell is larger than the bottom gradient between cells.
The numerical scheme is applied without any modification when no bottom emerge occur.

9. NUMERICAL RESULTS IN 2D

9.1. Test of mass conservation

The aim of this simple numerical test is to verify if mass is preserved when the treatment presented
in Section 8 is applied. We consider a channel with rectangular cross section, constant width and
length of 40m. The bed topography is that of a step and is given by

B(x, y)=
{
0 if x ∈ [0, 30), y ∈ [0, 40]
0.6 if x ∈ [30, 40], y ∈ [0, 40]

and a dam is placed at x = 15.5m, simulated by the initial conditions

h(x, y, 0) =
{
0.4 if x ∈ [0, 15.5), y ∈ [0, 40]
0 if x ∈ [15.5, 40], y ∈ [0, 40] , u(x, y, 0) ≡ 0, v(x, y, 0) ≡ 0

Solid boundary wall is imposed on the three sides of the channel and along with the presence of
the step there are no mass loses through the boundaries; thus, the total mass has to be preserved.
Although this test case represents, essentially, a one-dimensional flow in a two-dimensional setting,
it can serve as a benchmark problem and important conclusions can be drawn. Yet, the runup of
breaking or nonbreaking waves on very steep slopes can be compared to the reflection of an
incident wave on a vertical wall.

The numerical scheme was run with �x = �y = 0.8 and CFL= 0.5 with the correction presented
in Section 8 (for a fluid in motion) and without it. The results in Figure 13, at t = 10 s, show that
the water, wrongly, overtops the step when the correction is not applied. Running the corrected
scheme until a steady-state solution, corresponding to water at rest, was reached, the measured
final mass error was to the order of 10−13.

Figure 13. Mass conservation test: initial condition (left), without correction
(middle) and with correction (right).
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Figure 14. Wetting and drying in a channel: depth evolution.
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Figure 15. Wetting and drying in a channel: final steady state (left) and mass error history (right).

9.2. Dam-Break in a channel with topography and friction

In this test case, the performance of the presented scheme as to calculate more realistic situations
is validated. The problem is similar to that presented in References [34, 40, 41]. This problem,
although it does not fit in the long wave framework, can serve as a good numerical test in terms
of the wetting/drying process and conservation. In a channel 75m long and 30m wide the dam
is situated at x = 16m with initial water depth h + B = 1.875m, while the rest of the channel is
considered dry. Three mounds are located in the channel bottom. The initial condition and the
channel geometry can be seen in Figure 14 on top left. The Manning coefficient nm = 0.018 for
this problem. Boundary conditions are for fixed solid walls. A CFL= 0.4 was used with �x = 0.75,
�y = 0.5 and � = 0.5 in (49).

Numerical results are presented in Figure 14 for the water movement at different times to show
the propagation of the flood until steady state is reached. The small mounds are covered by the
water in its propagation and the effect of advancing and recession over the sloppy bed is clear.
The higher mound is always almost dry and the accumulation of water can be clearly observed.
The collision of the advancing front first with the higher mound and then with the downstream
boundary wall can be seen having the expected physical behaviour. The generation of dry bed can
also be observed for the small mounds as time evolves until it reaches a steady state. Figure 15
presents this steady state at t = 500 s along with the evolution of the relative mass error, proving
the scheme to be highly conservative.

9.3. Tsunami runup onto a complex three-dimensional beach

In this section, numerical results are compared with the laboratory data produced from a wave
tank experiment. This benchmark problem was also proposed in the Third International Workshop
on Long-Wave Runup Models. The wave tank was built as a 1:400 scale model approximating the
coastline bathymetry near Monai in Japan. This region suffered inundation from the 1993 Okushiri
tsunami. A significant feature of this tsunami was a maximum runup of 31.7m observed at the
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Figure 16. Runup due to the Okushiri tsunami: three-dimensional view (left) and contour
view (right) at various times.
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Figure 17. Runup due to the Okushiri tsunami (continued): three-dimensional view (left) and
contour view (right) at various times.
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Figure 18. Time variation of the surface level at Channels 5, 7, 9.

head of the Monai Valley, which opens onto a small pocket beach. This runup was not uniform
along the coast and is thought to have resulted from a particular topographic effect.

In the experiment, the incoming wave was induced by mechanical wave paddles along one side
of the tank and the resulting motion of the surface elevation was measured by gauges at three
separate locations. The initial data sets of bathymetry, topography and the wave specifications
for this problem, along with the collected data and an overhead movie of the experiment, are
available at the workshop website. The computational domain, which models a subregion of the
tank, is (x, y)∈ [0, 5.488m]× [0, 3.402m]. This include the inlet region that experienced large
wave runup. At x = 0 and for a time period of t = [0, 22.5 s] the provided data specify the measured
surface elevation of an incoming wave. The CFL number used for this simulation was 0.4 on a
single uniform grid of 392× 243 cells with the Manning coefficient equal to 0.025.
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Figure 19. Comparison of numerical solution (left) with snapshots from the overhead movie of the
laboratory experiment (right).

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:419–452
DOI: 10.1002/fld



450 A. I. DELIS, M. KAZOLEA AND N. A. KAMPANIS

The computed surface elevation is shown at various times in Figures 16 and 17 where a three-
dimensional view of the computed solution (along with the topography) during the primary runup
period is presented. In Figures 16 and 17 contour lines show the topography that was initially
above the water surface, including an island. In Figure 16 we can observe that after an initial draw
down the tsunami travel towards onshore and that diffracted waves met together behind the island.
Then, and in Figure 17, the tsunami wave reaches the land and we can see reflected waves from
the coast. A breaking wave is generated by superposition of waves coming from two different
coasts, showing the largest value of wave height.

The data sets provided at the workshop also contained water depth series from three wave
gauges (denoted Channels 5, 7 and 9) situated offshore from the inundation area and at points
(4.521, 1.196), (4.521, 1696) and (4.521, 2.196), respectively. Figure 18 compares the data from
the wave tank and the numerical results obtained at the gauges. The plots show good agreement
between the three measured time series and the obtained numerical results. At Channel 5 the
numerical result models accurately the initial draw down, the wave shoulder and the subsequent
reflections. The discrepancy between computed and measured data in the first 10 s is due to the
initial condition in the physical tank not being uniformly zero. Nevertheless, the arrival time and
the amplitude of the leading waves are correctly computed. Similarly good comparisons are evident
with data from the other two gauges.

The maximum computed runup height was about 0.074m in the numerical model scale, which
corresponds to almost 30m in the prototype scale and thus replicates fairly well the Monay Valley
runup and demonstrates its occurrence to be due to the interaction of the tsunami wave with the two
small juxtaposed valleys above the coastline. Figure 19 compares the numerical solution with close-
up snapshots from the overhead movie produced from the laboratory experiment, demonstrating
the similarities in the costal zone where the maximum runup occurred.

10. CONCLUSIONS

In this work, the formulation and validation of a finite volume shock capturing numerical scheme
that implements the Roe approximate Riemann solver and a well-known definition of a well-
balanced conservation property (the so-called C-Property) were presented in order to investigate
the potential to accurately and robustly compute flow regimes related to the propagation and
runup of long waves modelled by the nonlinear shallow water (NLSW) equations. A previously
introduced improved numerical technique in order to calculate wet/dry fronts over adverse steep
slopes in one dimension is applied. This technique is validated and applied here to one and
two dimensions and for a second order in space version of the finite volume scheme. Solving
the NLSW equations, the resulting scheme provides a reasonably good prediction of general
patterns and important characteristics of the runup process. The numerical results agree well with
analytical solutions and experimental benchmark data. The presented scheme provided a good
approximation of a breaking wave as a propagating bore or a stationary hydraulic jump showing
an excellent capability in conserving the mass volume and, although this lead to a slight phase
shift of the bore, the solution fully recovered after the breaking process stopped. The numerical
results for the maximum runup, the wave profile and the moving shoreline agree quite well
with the analytical and experimental data under breaking or nonbreaking conditions. Emphasis
was given to recently presented benchmark problems from the Third International Workshop on
Long-Wave Runup Models in order to verify and validate the numerical scheme. The numerical
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scheme was proven stable, robust and fairly accurate for problems representing more realistic
situations.
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